SPI-8000A Series Surface Mount, Separate Excitation Step-down Switching Mode

■Features

Surface-mount 16 pin package

- Output current: 3.0A
- High efficiency: 91% (at VIN = 10V, Io = 1A, Vo = 5V)
- Capable of downsizing a choke-coil due to IC's high switching frequency (125kHz). (Compared with conventional Sanken devices)
- · The output-voltage-variable type can vary its output voltage from 1V to 14V because of its low reference voltage (Vref) of 1V.
- Wide Input Voltage Range (8 to 50V)
- Output ON/OFF available
- · Built-in overcurrent and thermal protection circuits

Applications

- Onboard local power supplies
- OA equipment

· For stabilization of the secondary-side output voltage of switching power supplies

Recommended Operating Conditions

	Symbol	Ratings	Unit	
Parameter		SPI-8010A	Onic	
DC Input Voltage Range	Vin	(8 or Vo+3) ^{*1} to 50	V	
Output Voltage Range	Vo	1 to 14	V	
Output Current Range*2	lo	0.02 to 3.0*2	A	
Operating Junction Temperature Range Tjop		-30 to +125	°C	
Operating Temperature Range	Тор	-30 to +125	C°	

*1: The minimum value of an input voltage range is the higher of either 8V or Vo+3V.

*2: Please be sure to let the output current run more than 20 mA. When using by less than 20 mA, there is a possibility that the output voltage becomes unstable.

■Electrical Characteristics

			Rating				
Parameter	arameter	Symbol	SPI-8010A (Variable type)			Unit	
			min.	typ.	max.		
Reference Voltage	Valtaga	Vref	0.97	1.00	1.03		
	vollage	Conditions	VIN=12V, IO=1A			V	
Efficiency		Eff		86			
		Conditions	VIN=20V, Io=1A, Vo=5V			%	
Oscillation Frequency		Fosc		250			
		Conditions		VIN=12V, IO=1A		kHz	
	ation	ΔVoline		20	40		
Line Regulation		Conditions	VIN=10 to 30V, Io=1A			mV	
Load Regulation		ΔVOLOAD		10	30		
		Conditions	V _{IN} =12V, Io=0.1 to 1.5A			mV	
Temperature Coefficient of Reference Voltage		ΔVREF/ΔTa		±0.5		mV/°0	
Overcurrent Protection Starting Current		ls	3.1				
		Conditions	Vin=12V		A		
Quiescent Circuit Current		lq		7			
		Conditions	Vin=12V, Io=0A		mA		
Circuit Current at Output OFF		lq(off)			400		
		Conditions	VIN=12V, VONIOFF=0.3V			μΑ	
CE/SS Terminal	Low Level Voltage	Vssl			0.5	V	
	Outflow Current at	Issl			50	μΑ	
	Low Voltage	Conditions		Vssl=0V			

* Pin 4 is the CE/SS pin. Soft start at power on can be performed with a capacitor connected to this pin. The output can also be turned ON/OFF with this pin. The output is stopped by setting the voltage of this pin to VssL or lower. CE/SS-pin voltage can be changed with an opencollector drive circuit of a transistor. When using both the soft-start and ON/OFF functions together, the discharge current from C4 flows into the ON/OFF control transistor. Therefore, limit the current securely to protect the transistor if C3 capacitance is large.

The CE/SS pin is pulled up to the power supply in the IC, so applying the external voltage is prohibited.

Soft start +Vo. ON/OFF

■Absolute	Maximum	Ratings	

(Ta=25°C) Ratings Unit Parameter Symbol DC Input Voltage Vin 53 V Power Dissipation Pp*1, *2 2.4 W Junction Temperature +125 °C Tj Storage Temperature Tstg -40 to +125 °C Thermal Resistance (junction to case) θ_{j-c}^{*2} 18 °C/W Thermal Resistance (junction to ambient air) θ_{j-a}^{*2} 50 °C/W

*1: Limited due to thermal protection.

*2: When mounted on glass-epoxy board 700cm² (copper laminate area 30.8cm²).

Block Diagram

■Typical Connection Diagram

- Be sure to use a Schottky-barrier diode for D1. If other diodes like fast recovery diodes are used, ICs may be destroyed because of the reverse voltage generated by the recovery voltage or ON voltage.
- Choke coil L1
- If the winding resistance of the choke coil is too high, the efficiency may drop below the rated value.
- As the overcurrent protection starting current is about 4.5A, take care concerning heat radiation from the choke coil caused by magnetic saturation due to overload or short-circuited load.

Capacitors C1, C2

- As large ripple currents flow through C1 and C2, use high-frequency and low-impedance capacitors aiming for switching-mode-power-supply use. Especially
 when the impedance of C2 is high, the switching waveform may become abnormal at low temperatures. For C2, do not use a capacitor with an extremely low
 equivalent series resistance (ESR) such as an OS capacitor or a tantalum capacitor, which may cause an abnormal oscillation.
 Resistors R2. R3
- R2 and R3 are the resistors to set the output voltage. Set their values so that IREF becomes approx. 2mA. Obtain R2 and R3 values by the following formula:

$$R2 = \frac{(V_{OUT} - V_{REF})}{I_{REF}} = \frac{(V_{OUT} - 1)}{2 \times 10^{-3}} (\Omega), R3 = \frac{V_{REF}}{I_{REF}} = \frac{1}{2 \times 10^{-3}} = 500(\Omega)$$

To create the optimum operating conditions, place the components as close as possible to each other.

■Ta-PD Characteristics

