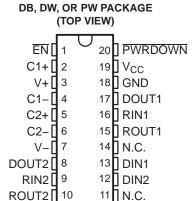
www.ti.com

TRS3222E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH \pm 15-kV ESD PROTECTION

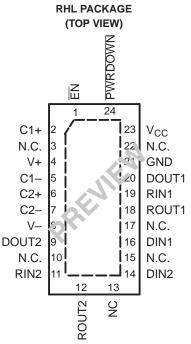
SLLS793-JUNE 2007

FEATURES

- ESD Protection for RS-232 Bus Pins
 - ±15-kV Human-Body Model (HBM)
 - ±8-kV IEC61000-4-2, Contact Discharge
 - ±15-kV IEC61000-4-2, Air-Gap Discharge
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- · Operates up to 500 kbit/s
- Two Drivers and Two Receivers
- Low Standby Current . . . 1 μA Typ
- External Capacitors . . . 4 × 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Alternative High-Speed Pin-Compatible Device (1 Mbit/s) for TRS3222E


APPLICATIONS

- Battery-Powered Systems
- PDAs
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment


DESCRIPTION/ORDERING INFORMATION

The TRS3222E consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND).

The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The device operates at typical data signaling rates up to 500 kbit/s and a maximum of 30-V/µs driver output slew rate.

N.C. - No internal connection

N.C. - No internal connection

The TRS3222E can be placed in the power-down mode by setting the power-down ($\overline{PWRDOWN}$) input low, which draws only 1 µA from the power supply. When the device is powered down, the receivers remain active while the drivers are placed in the high-impedance state. Also, during power down, the onboard charge pump is disabled; V+ is lowered to V_{CC} , and V- is raised toward GND. Receiver outputs also can be placed in the high-impedance state by setting enable (\overline{EN}) high.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SLLS793-JUNE 2007

ORDERING INFORMATION

T _A	PA	CKAGE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QFN – RHL	Reel of 2000	TRS3222ECRHLR	PREVIEW
	SOIC - DW	Tube of 25	TRS3222ECDW	TRS3222EC
	301C - DW	Reel of 2000	TRS3222ECDWR	TR33222EC
0°C to 70°C	SSOP – DB	Tube of 70	TRS3222ECDB	Desare.
	330P – DB	Reel of 2000	TRS3222ECDBR	RS22EC
	TSSOP – PW	Tube of 70	TRS3222ECPW	RS22EC
	1330P – PW	Reel of 2000	TRS3222ECPWR	RS22EC
	QFN – RHL	Reel of 2000 TRS3222EIRHLR		PREVIEW
	SOIC DW	Tube of 25	TRS3222EIDW	TDC2222FI
	SOIC – DW	Reel of 2000	TRS3222EIDWR	TRS3222EI
–40°C to 85°C	SSOP – DB	Tube of 70	TRS3222EIDB	Deadel .
	330P – DB	Reel of 2000	TRS3222EIDBR	RS22EI
	TCCOD DW	Tube of 70	TRS3222EIPW	DCCCTI
	TSSOP – PW	Reel of 2000	TRS3222EIPWR	RS22EI

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLES

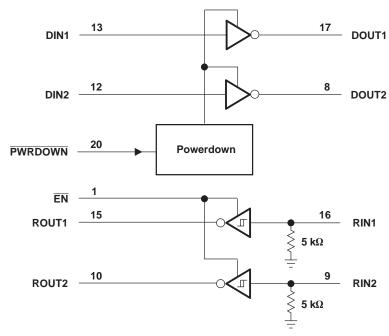
EACH DRIVER(1)

IN	PUTS	OUTPUT
DIN	PWRDOWN	DOUT
X	L	Z
L	Н	Н
Н	Н	L

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

EACH RECEIVER(1)

INPU	JTS	ОИТРИТ
RIN	EN	ROUT
L	L	Н
Н	L	L
X	Н	Z
Open	L	Н


H = high level, L = low level, X = irrelevant,
 Z = high impedance (off),
 Open = input disconnected or connected driver off

⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SLLS793-JUNE 2007

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers are for the DB, DW, and PW packages.

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive-output supply voltage range ⁽²⁾		-0.3	7	V
V-	Negative-output supply voltage range ⁽²⁾		0.3	-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
VI	Lancet coefficient and an	Driver (EN, PWRDOWN)	-0.3	6	
	Input voltage range	Receiver	-25	25	V
	Outside a literature	Driver	-13.2	13.2	
Vo	Output voltage range	Receiver	-0.3	V _{CC} + 0.3	V
		DB package		70	
0	[3](4)	DW package		58	0000
θ_{JA}	Package thermal impedance (3)(4)	PW package		83	°C/W
		RHL package		PREVIEW	
T _J	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to network GND.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

⁽³⁾ Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

TRS3222E

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

www.ti.com

SLLS793-JUNE 2007

Recommended Operating Conditions⁽¹⁾

See Figure 5

				MIN	NOM	MAX	UNIT
	Supply voltage		V _{CC} = 3.3 V	3	3.3	3.6	V
	Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	V
V	Driver and control high-level input voltage	DIN, EN, PWRDOWN	$V_{CC} = 3.3 \text{ V}$	2			V
V _{IH}	Driver and control high-level input voltage	DIN, EN, PVVKDOVIN	$V_{CC} = 5 V$	2.4		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
V_{IL}	Driver and control low-level input voltage	DIN, EN, PWRDOWN				8.0	V
V_{I}	Driver and control input voltage	DIN, EN, PWRDOWN		0		5.5	V
V_{I}	Receiver input voltage					25	V
т.	Operating free air temperature	TRS3222EC	0		70	°C	
IA	Operating free-air temperature TRS3222EI					85	C

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I	Input leakage current (EN, PWRDOWN)			±0.01	±1	μΑ
	Supply current	No load, PWRDOWN at V _{CC}		0.3	1	mA
ICC	Supply current (powered off)	No load, PWRDOWN at GND		1	10	μΑ

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

TRS3222E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SLLS793-JUNE 2007

DRIVER SECTION

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDIT	MIN	TYP ⁽²⁾	MAX	UNIT	
V_{OH}	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND,	DIN = GND	5	5.4		V
V_{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND,	$DIN = V_{CC}$	-5	-5.4		V
I _{IH}	High-level input current	$V_I = V_{CC}$			±0.01	±1	μΑ
$I_{\rm IL}$	Low-level input current	V _I at GND	V _I at GND		±0.01	±1	μΑ
Ios	Short-circuit output current ⁽³⁾	V _{CC} = 3.6 V	V _O = 0 V		±35	±60	mA
108	Short offour output outrent	$V_{CC} = 5.5 \text{ V}$	VO = 0 V		±00	±00	111/1
ro	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_O = \pm 2 \text{ V}$	300	10M		Ω
	Output lookaga aurrant	PWRDOWN = GND	$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ $V_{O} = \pm 12 \text{ V}$			±25	
I _{OZ}	Output leakage current	FYNKDOWN = GND	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ $V_{O} = \pm 10 \text{ V}$			±25	μΑ

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST (TEST CONDITIONS				UNIT
	Maximum data rate	C _L = 1000 pF, One DOUT switching,	$R_L = 3 \text{ k}\Omega$, See Figure 1	250	500		kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	C _L = 150 pF to 2500 pF, See Figure 2	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$		300		ns
	Slew rate, $R_1 = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega$,		C _L = 150 pF to 1000 pF	6		30	
SR(tr)	transition region (see Figure 1)	V _{CC} = 3.3 V	C _L = 150 pF to 2500 pF	4		30	V/µs

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as $|t_{PLH}|$ of each channel of the same device.

 ⁽¹⁾ Test conditions are C1–C4 = 0.1 μF at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at V_{CC} = 5 V ± 0.5 V.
 (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.
 (3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

TRS3222E

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SLLS793-JUNE 2007

RECEIVER SECTION

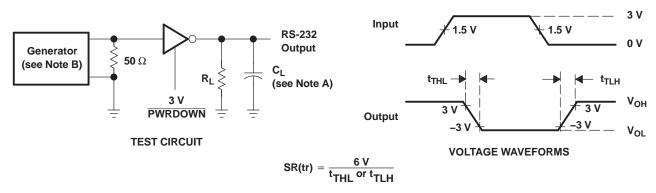
Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} - 0.6	V _{CC} - 0.1		V
V_{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
\/	Positive-going input threshold voltage	$V_{CC} = 3.3 \text{ V}$		1.5	2.4	V
V _{IT+}	Positive-going input timeshold voltage	V _{CC} = 5 V		1.8	2.4	V
V _{IT} _	Negative-going input threshold voltage	V _{CC} = 3.3 V	0.6	1.2		V
V IT—	Negative-going input threshold voltage	V _{CC} = 5 V	0.8	1.5		V
V_{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.3		V
I_{OZ}	Output leakage current	<u>EN</u> = 1		±0.05	±10	μA
r _l	Input resistance	$V_I = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

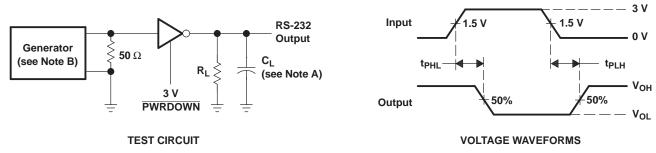
⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Switching Characteristics⁽¹⁾


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF, See Figure 3	300	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF, See Figure 3	300	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$	200	ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	300	ns

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as $|t_{PLH}|$ of each channel of the same device.


SLLS793-JUNE 2007

PARAMETER MEASUREMENT INFORMATION

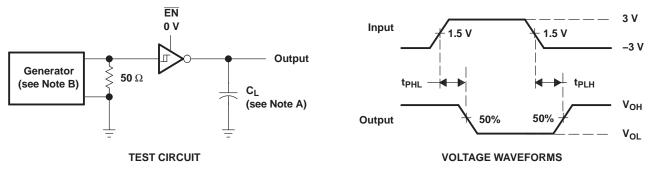
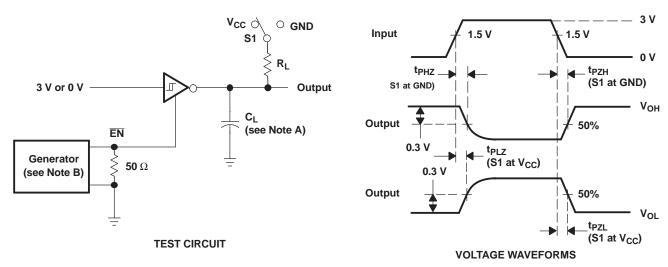

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 1. Driver Slew Rate

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_O = 50 Ω , 50% duty cycle, $t_r \le$ 10 ns, $t_f \le$ 10 ns.

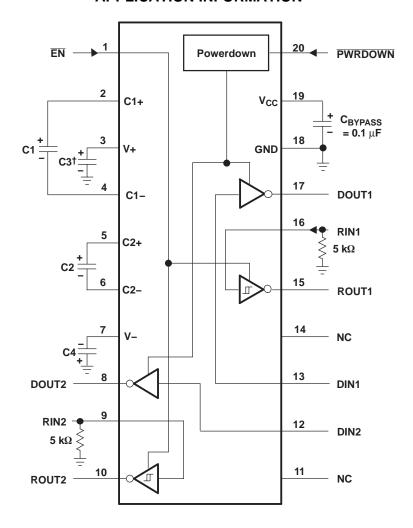
Figure 2. Driver Pulse Skew



- A. C₁ includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \ ns$, $t_f \le 10 \ ns$.

Figure 3. Receiver Propagation Delay Times

PARAMETER MEASUREMENT INFORMATION (continued)



- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 4. Receiver Enable and Disable Times

SLLS793-JUNE 2007

APPLICATION INFORMATION

 † C3 can be connected to V_{CC} or GND.

NOTES: A. Resistor values shown are nominal.

- B. NC No internal connection
- C. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

V_{CC} vs CAPACITOR VALUES

V _{CC}	C1	C2, C3, and C4
3.3 V \pm 0.3 V	0.1 μ F	0.1 μ F
5 V \pm 0.5 V	0.047 μ F	0.33 μF
3 V to 5.5 V	0.1 μF	0.47 μ F

Figure 5. Typical Operating Circuit and Capacitor Values

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TRS3222ECDB	ACTIVE	SSOP	DB	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS22EC	Samples
TRS3222ECDBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS22EC	Samples
TRS3222ECDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TRS3222EC	Samples
TRS3222ECPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS22EC	Samples
TRS3222ECPWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS22EC	Samples
TRS3222ECPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS22EC	Samples
TRS3222ECPWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS22EC	Samples
TRS3222EIDB	ACTIVE	SSOP	DB	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS22EI	Samples
TRS3222EIDBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS22EI	Samples
TRS3222EIPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS22EI	Samples
TRS3222EIPWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS22EI	Samples
TRS3222EIPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS22EI	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

17-Mar-2017

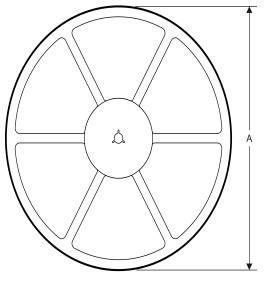
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

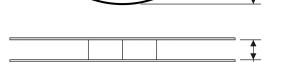
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

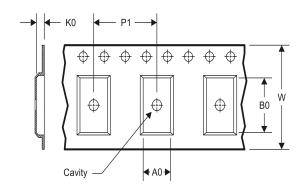
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

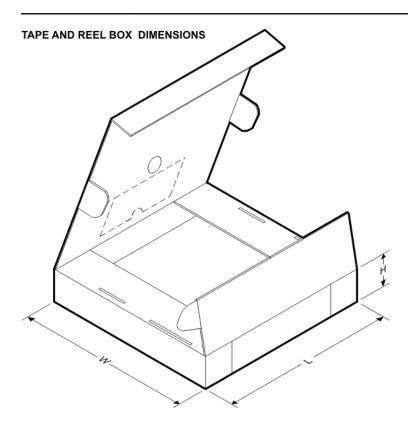

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Aug-2012


TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

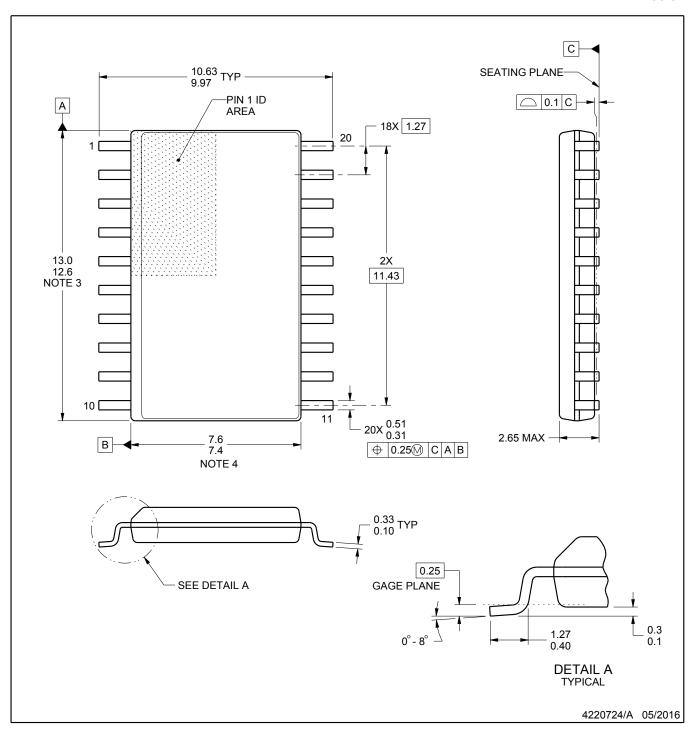

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

All difficults are florifinal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRS3222ECDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
TRS3222ECPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
TRS3222EIDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
TRS3222EIPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

www.ti.com 17-Aug-2012

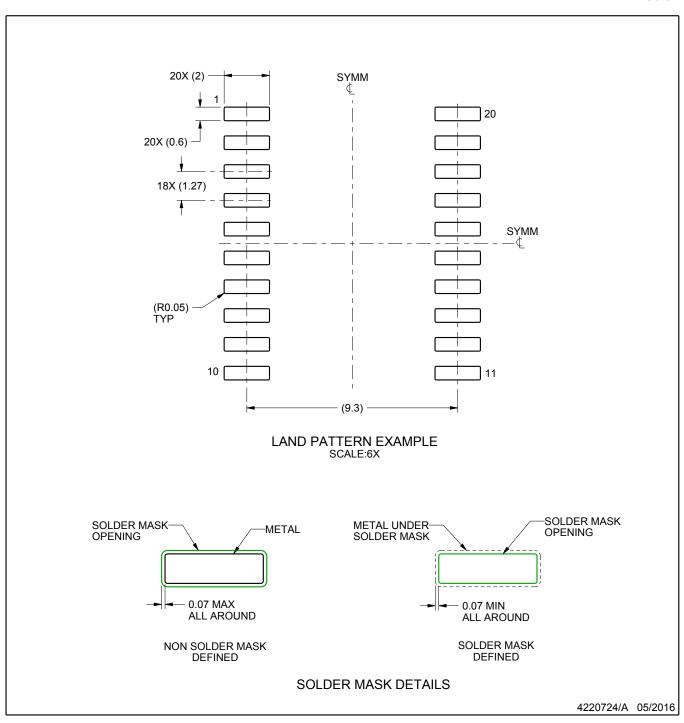


*All dimensions are nominal

7 III dillionorio di Cirinina										
Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)			
TRS3222ECDBR	SSOP	DB	20	2000	367.0	367.0	38.0			
TRS3222ECPWR	TSSOP	PW	20	2000	367.0	367.0	38.0			
TRS3222EIDBR	SSOP	DB	20	2000	367.0	367.0	38.0			
TRS3222EIPWR	TSSOP	PW	20	2000	367.0	367.0	38.0			

SOIC

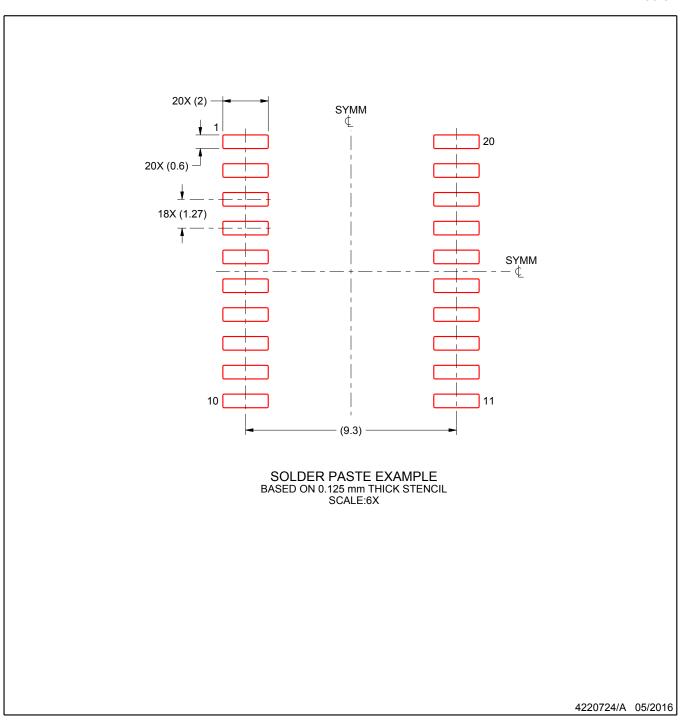
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

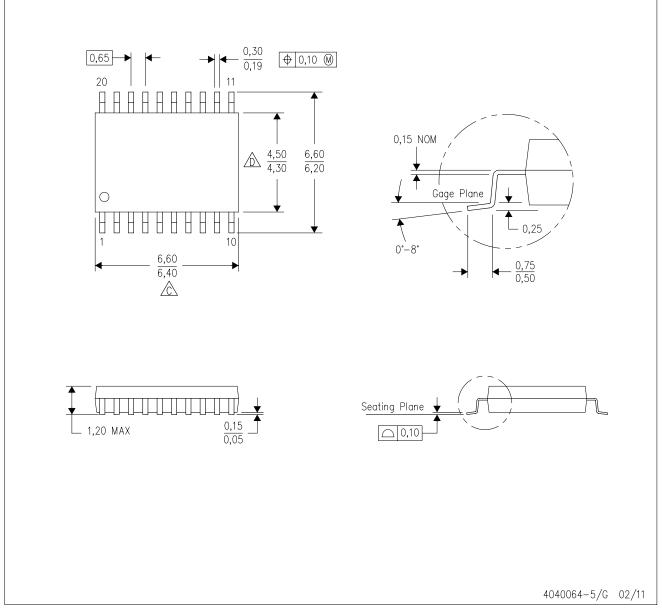
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

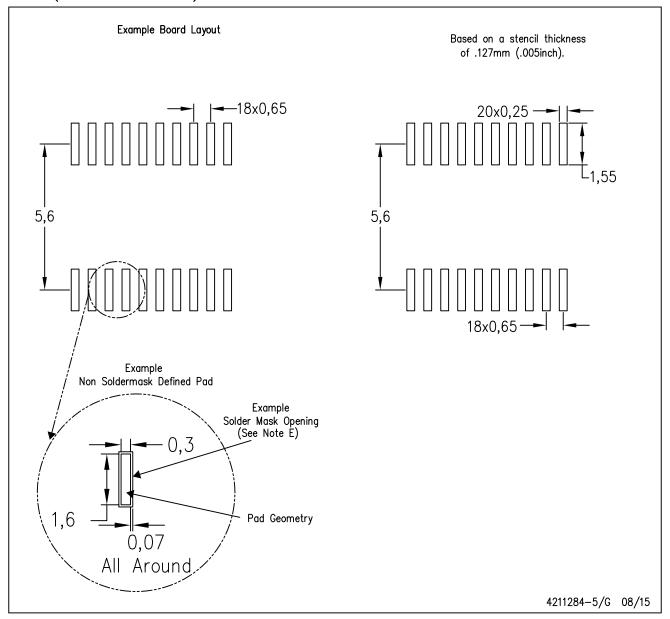
SOIC


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

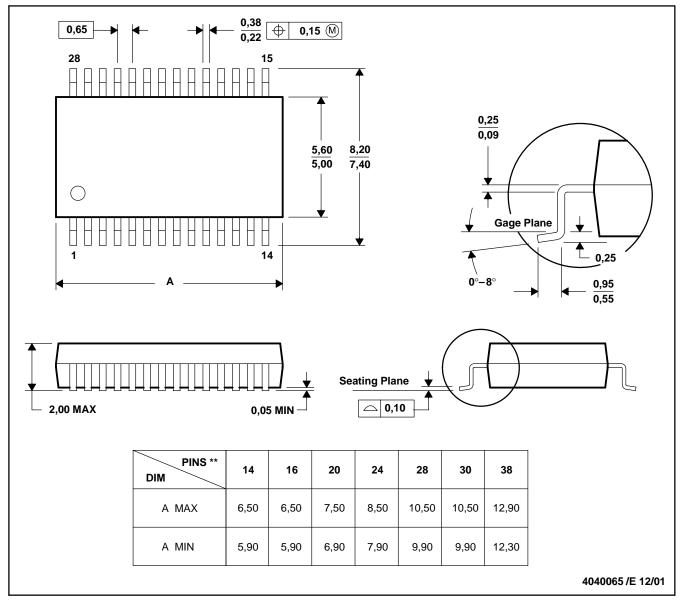

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:


- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150